Cytoplasmic pH regulation in thymic lymphocytes by an amiloride- sensitive Na+/H+ antiport
نویسندگان
چکیده
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i-regulatory mechanism.
منابع مشابه
22Na+ fluxes in thymic lymphocytes. II. Amiloride-sensitive Na+/H+ exchange pathway; reversibility of transport and asymmetry of the modifier site
22Na+ flux and cytoplasmic pH (pHi) determinations were used to study the reversibility, symmetry, and mechanism of activation of the Na+/H+ exchange system in rat thymic lymphocytes. In acid-loaded cells, the antiport can be detected as an Na+-induced, amiloride-sensitive alkalinization. At pHi greater than or equal to 7.0, amiloride-sensitive net H+ fluxes are not detectable. To investigate w...
متن کاملGrowth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the ...
متن کاملCytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/H+ exchange
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equi...
متن کامل22Na+ fluxes in thymic lymphocytes. I. Na+/Na+ and Na+/H+ exchange through an amiloride-insensitive pathway
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and ...
متن کاملOn the mechanism of amiloride-sensitive nonelectrogenic Na+-H+ exchange in cell membranes: Na+/H+ antiport or Na+/OH- symport?
The amiloride-sensitive and nonelectrogenic Na+-H+ exchange system of eucaryotic cells is currently a topic of great interest. The results of membrane transport in the presence of protons are shown to be similar in two cases: when H+ is transferred in one direction or OH- -in the opposite direction. Therefore, in principle Na+-H+ exchange can be performed by two different mechanisms: Na+/H+ ant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 83 شماره
صفحات -
تاریخ انتشار 1984